Resumen
La leucemia mieloide aguda (LMA) pediátrica es una enfermedad heterogénea. Los avances que se han realizado en el campo de la genética han generado cambios dinámicos en la definición de subentidades específicas, permitiendo una mejor comprensión y tratamiento de esta enfermedad. Es así que la 5ta clasificación de la WHO (World Health Organization) divide a las LMA en: LMA con alteraciones genéticas definidas, LMA definidas por diferenciación y sarcoma mieloide. En este trabajo describimos un caso de LMA en una paciente pediátrica, con alteraciones citogenéticas complejas, cuyo diagnóstico, clasificación y tratamiento requirieron colaboración interdisciplinaria. Se presenta también una revisión de la literatura actual sobre el tema.
Citas
San Miguel J.F, Gonzales M, Cañizo M.C, Auta,J.P, Zola, H. & Lopez-Borrasca, A. (1986) Surface marker analysis in acute myeloid leukaemia and correlation with FAB classification. British Journal of Haematology , 64, 547-560.
Avvisati G, ten Cate, J.W; Mandelli F. (1992) Acute Promyelocytic Leukaemia. British Journal of Haematology, 81(3), 315-320. https://doi.org/10.1111/j.1365-2141.1992.tb08233.x
Mannan A, Muhsen IN, Barragán E y col. (2020). Genotypic and phenotypic characteristics of acute promyelocytic leukemia translocation variants. Hematology/Oncology and Stem Cell Therapy, 13(4), 189–201. https://doi.org/10.1016/j.hemonc.2020.05.007
Khoury JD, Solary E, Abla O y col. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022 Jul;36(7):1703-1719. doi: 10.1038/s41375-022-01613-1. Epub 2022 Jun 22. PMID: 35732831; PMCID: PMC9252913.
Matarraz S, Leoz P, Fernández, C y col. (2018). Basophil-lineage commitment in acute promyelocytic leukemia predicts for severe bleeding after starting therapy. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 31(8), 1318–1331. https://doi.org/10.1038/s41379-018-0038-2
Golomb HM, Rowley J, Vardiman J, Baron J, Locker G, Krasnow S. (1976). Partial deletion of long arm of chromosome 17: a specific abnormality in acute promyelocytic leukemia? Archives of Internal Medicine, 136(7), 825–828. https://doi.org/10.1001/archinte.136.7.825
Lo Coco F, Avvisati G, Diverio D y col. (1991) Rearrangements of the RAR-alpha gene in acute promyelocytic leukaemia: correlations with morphology and immunophenotype. British Journal of Haematology, 78(4), 494–499. https://doi.org/10.1111/j.1365-2141.1991.tb04478.x
Sanz MA, Fenaux P, Tallman MS y col. (2019). Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood, 133(15), 1630–1643. https://doi.org/10.1182/blood-2019-01-894980
Shaknovich R, Yeyati PL, Ivins S y col. (1998). The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Molecular and Cellular Biology, 18(9), 5533–5545. https://doi.org/10.1128/mcb.18.9.5533
Sobas M, Talarn-Forcadell MC, Martínez-Cuadrón D y col. (2020). PLZF-RARα, NPM1-RARα, and other acute promyelocytic leukemia variants: The PETHEMA registry experience and systematic literature review. Cancers, 12(5), 1313. https://doi.org/10.3390/cancers12051313
Rabade N, Raval G, Chaudhary S y col. (2028). Molecular heterogeneity in acute promyelocytic leukemia - a single centre experience from India. Mediterranean journal of hematology and infectious diseases, 10(1), 2018002. https://doi.org/10.4084/mjhid.2018.002
Fabiani E, Cicconi L, Nardozza AM y col. (2021). Mutational profile of ZBTB16‐RARA‐positive acute myeloid leukemia. Cancer Medicine, 10(12), 3839–3847. https://doi.org/10.1002/cam4.3904
Licht JD, Chomienne C, Goy A y col. (1995). Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood, 85(4), 1083–1094. https://doi.org/10.1182/blood.v85.4.1083.bloodjournal8541083
Cicconi L, Testi AM, Montesinos P y col. (2021). Characteristics and outcome of acute myeloid leukemia with uncommon retinoic acid receptor-alpha (RARA) fusion variants. Blood Cancer Journal, 11(10). https://doi.org/10.1038/s41408-021-00561-w
Petti MC, Fazi F, Gentile M y col. (2002). Complete remission through blast cell differentiation inPLZF/RARα-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood, 100(3), 1065–1067. https://doi.org/10.1182/blood-2001-12-0368
Hussain L, Maimaitiyiming Y, Islam K, Naranmandura H. (2019). Acute promyelocytic leukemia and variant fusion proteins: PLZF-RARα fusion protein at a glance. Seminars in Oncology, 46(2), 133–144. https://doi.org/10.1053/j.seminoncol.2019.04.004
Butler LH, Slany R, Cui X y col. (1997). The HRX proto-oncogene product is widely expressed in human tissues and localizes to nuclear structures. Blood, 89(9), 3361–3370. https://doi.org/10.1182/blood.v89.9.3361
Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W, y col. (2002). Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 359(9321), 1909–1915. https://doi.org/10.1016/S0140-6736(02)08782-2
Pui CH, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM, y col. (2003). Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia, 17(4), 700–706. https://doi.org/10.1038/sj.leu.2402883
Moorman AV, Ensor HM, Richards SM, y col. (2010). Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. The Lancet Oncology, 11(5), 429–438. https://doi.org/10.1016/S1470-2045(10)70066-8
Andersen MK, Christiansen DH, Jensen BA, y col. (2001). Therapy-related acute lymphoblastic leukaemia with MLL rearrangements following DNA topoisomerase II inhibitors, an increasing problem: report on two new cases and review of the literature since 1992: Therapy-related ALL Following Topoisomerase II Inhibitors. British Journal of Haematology, 114(3), 539–543. https://doi.org/10.1046/j.1365-2141.2001.03000.x
Meyer C, Larghero P, Almeida Lopes B y col. (2023). The KMT2A recombinome of acute leukemias in 2023. Leukemia, 37(5), 988–1005. https://doi.org/10.1038/s41375-023-01877-1
Von Neuhoff C, Reinhardt D, Sander A y col. (2010). Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(16), 2682–2689. https://doi.org/10.1200/jco.2009.25.6321
Chen X, & Cherian, S. (2017). Acute myeloid leukemia immunophenotyping by flow cytometric analysis. Clinics in Laboratory Medicine, 37(4), 753–769. https://doi.org/10.1016/j.cll.2017.07.003
Konoplev S, Wang X, Tang G y col. (2022). Comprehensive immunophenotypic study of acute myeloid leukemia with KMT2A (MLL) rearrangement in adults: A single‐institution experience. Cytometry. Part B, Clinical Cytometry, 102(2), 123–133. https://doi.org/10.1002/cyto.b.22051
Balgobind BV, Raimondi SC, Harbott J y col. (2009). Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood, 114(12), 2489–2496. https://doi.org/10.1182/blood-2009-04-215152
Strehl S, König M, Meyer C y col. (2006). Molecular dissection of t(11;17) in acute myeloid leukemia reveals a variety of gene fusions with heterogeneous fusion transcripts and multiple splice variants. Genes, Chromosomes & Cancer, 45(11), 1041–1049. https://doi.org/10.1002/gcc.20372
Rubnitz JE, Inaba H, Dahl G y col. (2010). Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. The Lancet Oncology, 11(6), 543–552. https://doi.org/10.1016/S1470-2045(10)70090-5
Van Weelderen RE, Klein K, Harrison CJ y col. (2023). Measurable residual disease and fusion partner independently predict survival and relapse risk in childhood KMT2A-rearranged acute myeloid leukemia: A study by the International Berlin-Frankfurt-Münster Study Group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 41(16), 2963–2974. https://doi.org/10.1200/jco.22.02120
Pollard JA, Guest E, Alonzo TA, y col. (2021). Gemtuzumab ozogamicina mejora la supervivencia libre de eventos y reduce las recaídas en la leucemia mieloide aguda (LMA) pediátrica con reordenamiento de KMT2A: Resultados del ensayo de fase III AAML0531 del Children’s Oncology Group. J Clin Oncol, 39, 3149–3160.
Todo el material publicado en la revista Hematología (versión electrónica y versión impresa), será cedido a la Sociedad Argentina de Hematología. De conformidad con la ley de derecho de autor (ley 11723) se les enviara a los autores de cada trabajo aceptado formulario de cesión de derechos de autor que deberá ser firmado por todos los autores antes de la publicación. Los autores deberán retener una copia del original pues la revista, no acepta responsabilidad por daños o pérdidas del material enviado. Los autores deberán remitir una versión electrónica al correo: revista@sah.org.ar
