Resumen
La inestabilidad genómica (IG) es una característica observada en casi todas las neoplasias y se define como una tendencia aumentada del genoma a adquirir diferentes tipos de cambios. El mieloma múltiple (MM) se caracteriza por una heterogeneidad genética importante evidenciada por numerosas alteraciones cromosómicas numéricas y estructurales recurrentes, primarias y secundarias, presentes al diagnóstico o adquiridas durante la evolución de la enfermedad, que sustentan una importante IG en la patología. Existen diferentes formas de IG que abarcan: inestabilidad cromosómica (IC), de microsatélites (IMS) y nucleotídica (IN). La IC constituye la forma más común en cáncer humano y se caracteriza por la existencia de una tasa acelerada de alteraciones cromosómicas durante las sucesivas divisiones celulares. Existen diferentes mecanismos relacionados al desarrollo de IC, entre ellos: rupturas del ADN a nivel de 1q12 asociada a la presencia de translocaciones “jumping”, cromotripsis, cromoplexia e inserciones con cambio de templado. A estas alteraciones corresponde agregar el acortamiento telomérico y la asincronía de replicación. La IMS ha sido poco estudiada en MM. En cuanto a la IN, se caracteriza por sustituciones de base y pequeñas inserciones/deleciones (indels) que involucran tanto el genoma codificante como el no-codificante, generando firmas mutacionales distintivas que pueden afectar diferentes caminos de señalización. Entre ellas las más relevantes son: desaminación de metilcitosinas, APOBEC, actividad aberrante de AID y kataegis. Su presencia se asocia a progresión de la enfermedad y resistencia al tratamiento. Finalmente, cabe destacar la importancia de las alteraciones epigenéticas: metilación del ADN, modificaciones de histonas y expresión de ARNs no-codificantes, que presentan también un rol importante en el desarrollo neoplásico. Sin duda, el estudio de estos mecanismos de IG en el MM permitirá ahondar en el conocimiento de las características biológicas de la patología, pudiendo constituir un aporte en la generación de nuevas estrategias terapéuticas.
Citas
Lee JK, Choi Y-L, Kwon M, Park PJ. Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu Rev Pathol. 2016;11:283-312.
Alagpulinsa DA, Szalat RE, Poznansky MC, Shmookler Reis RJ. Genomic instability in multiple mieloma. Trends Cancer. 2020;10:858-73.
Mateuca R, Lombaert N, Aka PV, Decordier I, KirschVolders M. Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie. 2006;88:1515-31.
Negrini S, Gorgoulis VG, Halazonetis T D. Genomic instability – an evolving hallmark of cancer. Nature Rev Mol Cell Biol. 2010;11:220-8.
Roschke AV, Rozenblum E. Multi-layered cancer chromosomal instability phenotype. Front Oncol. 2014;3:302.
Bakhoum SF, Silkworth WT, Nardi IK, Nicholson JM, Compton DA, Cimini D. The mitotic origin of chromosomal instability. Curr Biol. 2014;24:R148-9.
Crasta KK, Ganem NJ, Dagher RR y col. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53-8.
Bakhoum SF, Kabeche L, Murnane JP, Zaki BI, Compton DA. DNA-damage response during mitosis induces whole-chromosome missegregation. Cancer Discov. 2014;4:1281-9.
Bakhoum SF, Compton DA. Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest. 2012;122:138-43.
Bakhoum SF, Landau DA. Chromosomal Instability as a Driver of Tumor Heterogeneity and Evolution. Cold Spring Harb Perspect Med. 2017;7:a029611.
Sansregret L, Vanhaesebroeck B, Swanton C. Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol. 2018;15:139-50.
Fonseca R, Bergsagel PL, Drach J y col. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23:2210- 21.
Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 2017;14:100-13.
Rajkumar SV. Multiple myeloma: 2018 update on diagnosis, risk-stratification, and management. Am J Hematol. 2018;93:1091-110.
Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12:335-348.
Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306-13.
Sawyer JR, Tricot G, Lukacs JL et al. Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome arm 1q. Genes Chrom Cancer. 2005;42:95-106.
Sawyer JR, Tian E, Heuck CJ y col. Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood. 2014;123:2504-12.
Sawyer JR, Tian E, Heuck CJ y col. Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma. Blood. 2015;125:3756-9.
Sawyer JR, Tian E, Walker BA y col. An acquired highrisk chromosome instability phenotype in multiple myeloma: Jumping 1q Syndrome. Blood Cancer J. 2019;9:62.
Bersani F, Lee E, Kharchenko PV y col. Pericentromeric satellite repeat expansions through RNA derived DNA intermediates in cancer. Proc Natl Acad Sci USA. 2015;112:15148-53.
Brückmann NH, Pedersen CB, Ditzel HJ, Gjerstorff MF. Epigenetic reprogramming of pericentromeric satellite DNA in premalignant and malignant Lesions. Mol Cancer Res. 2018;16:417-27.
Black JC, Manning AL, Van Rechem C y col. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell. 2013;154:541-55.
Black JC, Atabakhsh E, Kim y col. Hypoxia drives transient site-specific copy gain and drug resistant gene expression. Genes Dev. 2015;29:1018-31.
Black JC, Zhang H, Kim J, Getz G, Whetstine JR. Regulation of transient site-specific copy gain by microRNA. J Biol Chem. 2016;291:4862-71. 26. Shammas MA, Shmookler Reis RJ, Koley H, Batchu RB, Li C, Munshi NS. Dysfunctional homologous recombination mediates genomic instability and progression in myeloma. Blood. 2009; 113: 2290-7.
Marchesini M, Ogoti Y, Fiorini E y col. ILF2 is a regulator of RNA splicing and DNA damage response in 1q21-amplified multiple myeloma. Cancer Cell. 2017;32:88-100.
Lazzari E, Mondala PK, Santos ND y col. Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nat. Commun. 2017;8:1922.
Stephens PJ, Greenman CD, Fu B y col. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27-40.
Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T. Chromothripsis and kataegis induced by telomere crisis. Cell. 2015;163:1641-54.
Magrangeas F, Avet-Loiseau H, Munshi NC, Minvielle S. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood. 2011;118:675-8.
Maura F, Bolli N, Angelopoulos N y col. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat. Commun. 2019;10:3835.
Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921-9.
Gisselsson D, Jonson T, Petersén A y col. Telomere dysfunction triggers extensive DNA fragmentation and evolution to complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA. 2001;98:12683-8.
Gisselsson D, Jonson T, Yu C y col. Centrosomal abnormalities, multipolar mitoses, and chromosomal instability in head and neck tumours with dysfunctional telomeres. Br J Cancer. 2002;87: 202-7.
Höglund M, Gisselsson D, Hansen GB, Sähl T, Mitelman F. Ovarian carcinoma develops through multiple modes of chromosomal evolution. Cancer Res. 2003;63:3378-85.
Shay JW, Zou Y, Hiyama E, Wright WE. Telomerase and cancer. Hum Mol Genet. 2001;10:677-85.
Karlseder J, Smogorzewska A, De Lange T. Senescence induced by altered telomere state, not telomere loss. Science. 2002;295:2446-9.
Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448:1068-71.
Bodnar AG, Ouellette M, Frolkis M y col. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349-52.
Cairney CJ, Keith WN. Telomerase redefined: Integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie. 2008;90:13-23.
Calado RT, Young NS. Telomere maintenance and human bone marrow failure. Blood. 2008;111: 4446-55. 43. Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. Mutat Res. 2017;771:15-31.
44. Xu D, Zheng C, Bergenbrant S y col. Telomerase activity in plasma cell dyscrasias. Br J Cancer. 2001;84:621-5.
Shiratsuchi M, Muta K, Abe Y y col. Clinical significance of telomerase activity in multiple myeloma. Cancer. 2002;94:2232-8.
Cottliar A, Pedrazzini E, Corrado C, Engelberger MI, Narbaitz M, Slavutsky I. Telomere shortening in patients with plasma cell disorders. Eur J Haematol. 2003;71:334-40.
Wu KD, Orme LM, Shaughnessy J Jr, Jacobson J, Barlogie B, Moore MA. Telomerase and telomere length in multiple myeloma: correlations with disease heterogeneity, cytogenetic status, and overall survival. Blood. 2003;101:4982-9.
Hyatt S, Jones RE, Heppel NH y col. Telomere length is a critical determinant for survival in multiple myeloma. Br J Haematol. 2017;178:94-8.
Aref S, Al Saeed A, El Menshawy N, Abdalla D, El Ashery M. Prognostic relevance of telomere length and telomerase reverse transcriptase variant (rs2242652) on the multiple myeloma patients. J Clin Lab Anal. 2020;34:e23133.
Panero J, Arbelbide J, Fantl DB, García Rivello H, Kohan D, Slavutsky I. Altered mRNA expression of telomere-associated genes in monoclonal gammopathy of undetermined significance and multiple myeloma. Mol Med. 2010;16:471-8.
Panero J, Stella F, Schutz N, Fantl DB, Slavutsky I. Differential Expression of Non-Shelterin Genes Associated with High Telomerase Levels and Telomere Shortening in Plasma Cell Disorders. PLoS One. 2015;10:e0137972.
De S, Michor F. DNA replication timing and longrange DNA interactions predict mutational landscapes of cancer genomes. Nat Biotechnol. 2011;29:1103-8.
Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Med. 2013;3:1-26.
Goren A, Cedar H. Replicating by the clock. Nature Rev. 2003;4:25-32.
Dotan ZA, Dotan A, Litmanovich T y col. Modification in the inherent mode of allelic replication of lymphocytes of patients suffering from renal cell carcinoma: a novel genetic alteration associated with malignancy. Gene Chrom Cancer. 2000;27:270-77.
Korenstein-Ilan A, Amiel A, Lalezari S, Lishner M, Avivi L. Allele-specific replication associated with aneuploidy in blood cells of patients with hematologic malignancies. Cancer Genet Cytogenet. 2002;139:97-103.
Du Q, Bert SA, Armstrong NJ y col. Replication timing and epigenome remodelling are associated with the nature of chromosomal rearrangements in cancer. Nature Comm. 2019;10:416.
Amiel A, Kirgner I, Gaber E, Manor Y, Fejgin M, Lishner M. Replication pattern in cancer: asynchronous replication in multiple mieloma and in monoclonal gammopathy. Cancer Genet Cytogenet. 1999;108:32-7.
Stella F, Pedrazzini E, Slavutsky I. Análisis citogenético y asincronía de replicación en pacientes con deleción 6q en mieloma múltiple. J Basic & Appl Genet. 2019;XXX Nº 1 (Suppl):98.
Leach FS, Nicolaides NC, Papadopoulos N y col. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993;75:1215-25.
Li YC, Korol AB, Fahima T y col. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol. 2002;11:2453-65.
Velangi MR, Matheson EC, Morgan GJ y col. DNA mismatch repair pathway defects in the pathogenesis and evolution of myeloma. Carcinogenesis. 2004;25:1795- 1803.
Timurağaoğlu A, Demircin S, Dizlek S, Alanoğlu G, Kiriş E. Microsatellite instability is a common finding in multiple myeloma. Clin Lymphoma Myeloma. 2009;9:371-4.
Miyashita K, Fujii K, Suehiro Y y col. Heterochronous occurrence of microsatellite instability in multiple myeloma – an implication for a role of defective DNA mismatch repair in myelomagenesis. Leuk Lymphoma. 2018;59:2454-9.
Oda S, Maehara Y, Ikeda Y y col. Two modes of microsatellite instability in human cancer: differential connection of defective DNA mismatch repair to dinucleotide repeat instability. Nucleic Acids Res. 2005;33:1628-36.
Janz S, Zhan F, Sun F y col. Germline risk contribution to genomic instability in multiple myeloma. Front Genet. 2019;10:424.
Hoang PH, Cornish AJ, Dobbins SE, Kaiser M, Houlston RS. Mutational processes contributing to the development of multiple myeloma. Blood Cancer J. 2019;9:60.
Bolli N, Avet-Loiseau H, Wedge DC y col. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.
Walker BA, Wardell CP, Murison A y col. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997.
Bacolla A, Cooper DN, Vasquez KM. Mechanisms of base substitution mutagenesis in cancer genomes. Genes. 2014;5:108-46.
Rebhand, S, Huemer M, Gassner FJ y col. APOBEC3 signature mutations in chronic lymphocytic leukemia. Leukemia. 2014;28:1929-32.
Bolli N, Maura F, Minvielle S y col. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun. 2018;9:3363.
Rustad EH, Yellapantula V, Leongamornlert D y col. Timing the initiation of multiple myeloma. Nat Commun. 2020;11:1917.
Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:548-67.
Maura F, Petljak M, Lionetti M y col. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia. 2018; 32:1044-8.
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553-63.
Robbiani DF, Bunting S, Feldhahn N y col. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell. 2009;36:631-41.
Maura F, Rustad EH, Yellapantula V y col. Role of AID in the temporal pattern of acquisition of driver mutations in multiple myeloma. Leukemia. 2019;34:1476-80.
Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683-92.
Stanganelli C, Arbelbide J, Fantl DB, Corrado C, Slavutsky I. DNA methylation analysis of tumor suppressor genes in monoclonal gammopathy of undetermined significance. Ann Hematol. 2010;89:191-9.
Walker BA, Wardell CP, Chiecchio L y col. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood. 2011;117:553-62.
Heuck CJ, Mehta J, Bhagat T y col. Myeloma is characterized by stage-specific alterations in DNA methylation that occur early during myelomagenesis. J Immunol. 2013;190:2966-75.
Moreaux J, Reme T, Leonard W y col. Development of gene expression-based score to predict sensitivity of multiple myeloma cells to DNA methylation inhibitors.Mol Cancer Ther. 2012;11:2685-92.
De Smedt E, Lui H, Maes K y col. The epigenome in multiple myeloma: Impact on tumor cell plasticity and drug response. Front Oncol. 2018;8:566.
Alzrigat M, Párraga AA, Jernberg-Wiklund H. Epigenetics in multiple myeloma: From mechanisms to therapy. Semin Cancer Biol. 2018;51:101-15.
Vicente-Duenas C, Romero-Camarero I, Gonzalez-Herrero I y col. A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors. EMBO J. 2012;31:3704-17.
Martinez-Garcia E, Popovic R, Min DJ y col. The MMSET histone methyltransferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood. 2011;117:211-20.
Pei H, Zhang L, Luo K y col. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature. 2011;470:124-8.
Todo el material publicado en la revista Hematología (versión electrónica y versión impresa), será cedido a la Sociedad Argentina de Hematología. De conformidad con la ley de derecho de autor (ley 11723) se les enviara a los autores de cada trabajo aceptado formulario de cesión de derechos de autor que deberá ser firmado por todos los autores antes de la publicación. Los autores deberán retener una copia del original pues la revista, no acepta responsabilidad por daños o pérdidas del material enviado. Los autores deberán remitir una versión electrónica al correo: revista@sah.org.ar